(An Autonomous Institute Affiliated to CSVTU Bhilai)

	S	CHEME OF	EXA	MI	NA	ΓΙΟΝ				
	B. Tech- 4th	n Year					S	Semes	ter: 7 th	-
	Branch: Co	mputer S	cie	nc	e ai	nd E	ngii	neer	ing	
		(Data	Sci	en	ce)		U		C	
GN		Subject	Per	iods weeł	per	Schen	ne of E	Exam	Total	Credit
5. N.	Subject Name	Code	т	т	D	Theor	y/Pra	ctical	Marks	$\frac{L+(1+P)}{2}$
			L	1	r	ESE	СТ	ТА		,
1	Digital Image Processing	CS110701	2	1	-	100	20	30	150	3
2	Advanced R Programming	CS102702	2	1	-	100	20	30	150	3
3	Deep Learning	CS110703	3	0	-	100	20	30	150	3
4	Professional Elective –III	Refer Table -II	3	0	-	100	20	30	150	3
5	Open Elective – II	Refer Table-I	3	0	-	100	20	30	150	3
6	R Programming Lab	CS102791	-	-	2	25	-	25	50	1
7	Deep Learning Lab	CS110792	-		2	25	-	25	50	1
8	Capstone Project Phase -1	CS102793	-	-	4	50	-	50	100	2
9	Industrial Training (VT)	CS102794	-	-	2	-	-	25	25	1
10	Universal Human Value and Professional Ethics	CS100795	-	-	-	-	-	25	25	-
	Total		15	1	8	600	100	300	1000	20

Table-I: Professional Elective – III [7th Sem]

SI. No.	Board of Studies (BOS)	Courses (Subject)	Course Code
1	Computer Science and Engg.	Internet and Web Technology	CS102721
2	Computer Science and Engg.	Natural Language Processing	CS110722
3	Computer Science and Engg.	Object Oriented Database Management System	CS111723
4	Computer Science and Engg.	AI in Gaming	CS114724
5	Computer Science and Engg.	Industrial IOT	CS115725

Table-II: Open Elective – II [7th Sem]

SI. No.	Board of Studies (BOS)	Courses (Subject)	Course Code
1	Computer Science and Engg.	Advance Statistical Methods	CS100741
2	Computer Science and Engg.	Enterprise Resource Planning	CS100742

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

कैवल्यम् "

Subject Code CS102701	Digital Image Processing	L = 3	T = 2	P = 0	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
The objective of the course to:	Students will be able to:
 To introduce the fundamentals of deep learning and the main research activities in this field. To learn architectures and optimization methods for deep neural network training. Unit – 1 : Introduction: Digital Image Image Processing, Components Of Digital Ir 	 CO1 Understand the fundamentals of deep learning and the main research activities in this field CO2 Remember architectures and optimization methods for deep neural network training CO3 Implement, apply and test relevant learning algorithms in TensorFlow CO4 Critically evaluate the method's applicability in new contexts and construct new applications Processing, Fundamental Steps In nage Processing Systems, Elements 08 Hrs
Of Visual Perception, Image Formation Quantization, Relationship Between Pi Connectivity, Regions, Boundaries And Dist	Model, Image Sampling And xels- Neighborhood, Adjacency ance Measures.
Unit- 2 Image Enhancement: Enhancement: Enhancement: Intensity Transformation, Histogram Proceed Averaging, Spatial Filtering –Smoothing Science, Frequency Domain- Fourier Translation, Homomorphic Filtering.	ent By Point Processing, Sample essing, Image Subtraction, Image Special Filters, Sharpening Spatial ansform, Low Pass, High Pass,
Unit- 3 Image Segmentation: Detection o Edge Detection, Edge Linking And Boundar Based Segmentation- Region Growing, Reg Motion in Segmentation- Spatial Tech Technique.	f Discontinuities- Point, Line And y Detection, Thresholding, Region- ion Splitting And Merging. Use of niques and Frequency DomainCO 03 08 Hrs
Unit- 4 Image Compression: Coding Red Fidelity Criteria, Image Compression Mode Compression, Variable Length Coding, Bit Coding, Image Compression Standards, Red and Mpeg.	dundancy, Inter Pixel Redundancy, Is, Error Free Compression, Lossy Plane Coding, Lossless Predictive al Time Image Transmission, JpegCO 04 08 Hrs
Unit – 5 Color Image Processing: Col Processing, Color Transformation, Smo	or Models, Pseudo Color Image CO 05 othing and Sharpening, Image

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Seventh Semester- Computer Science & Engineering (Data Science) Segmentation Based Hrs

l On Color		08

Text Books:

S. No.	Title	Author(s)	Publisher
1	DIGITAL IMAGE PROCESSING	R. C. GONZALEZ, R. E. WOODS	PEARSON EDUCATION
2	DIGITAL IMAGE PROCESSING	W.K. PRATT	WILEY- INTERSCIENCE

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

यम् '

Subject Code CS102702	Advanced R Programming	L = 3	T = 2	P = 0	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

 Learn Fundamentals of R Covers how to use different functions in R, how to read data into R, accessing R packages, writing R functions, debugging, and organizing data using R functions. Cover the Basics of statistical data analysis with examples. The whole syllabus will give an idea to collect, compile and visualize data using statistical functions. Unit I Introduction to Vector, Matrix and Data Frames Introduction to vectors, Vector recycling, Slicing and indexing a vector in R, Extracting elements from a vector, Changing the dimensions of an object in R, Creating a matrix in R, Indexing an element from a matrix. Slicing a matrix in R. Matrix
Unit I Introduction to Vector, Matrix and Data Frames Introduction to vectors, Vector recycling, Slicing and indexing a vector in R, Extracting elements from a vector, Changing the dimensions of an object in R, Creating a matrix in R, Indexing an element from a matrix. Slicing a matrix in R. Matrix
arithmetic, Matrix operations, Categorical data, Factors in R, Lists in R, Introduction, Creating a data frame in R, The Tidy verse Package, Data import in R, Importing a CSV in R Creating data frames, Getting a sense of your data frame, Indexing and slicing a data frame in R, Data frame operations, extending a data frame in R
Unit II Manipulating data Introduction, Data transformation with R- the Dplyr package, Sampling data with Dplyr package, Using the pipe operator in R, Manipulating Data, Tidying data in R-gather() and separate(), unite(), spread(), Tidying data .CO 08 HIntroduction to data visualization, introduction to ggplot2, variables: revisited, Building a histogram with ggplot2, building a bar chart with ggplot2, Building a box and whiskers plot with ggplot2, Building a scatterplot with ggplot2CO 08 H
Unit III Exploratory Data analysis Population vs. sample, Mean, median, mode, Skewness, Variance, standard deviation and coefficient of variability, Covariance and CorrelationCO 0 08 HistoryUnit IV Hypothesis Testing Distribution Standard Error and ConfidenceCO

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Seventh Semester- Computer Science & Engineering (Data Science)

Intervals, Hypothesis, Type I and Type II errors, Test for the mean-population	08 Hrs		
variance known, The P-value, Comparing two means-Independent Samples			
Unit V Linear Regression Analysis The linear regression model, Correlation vs	CO 05		
regression, Correlation vs regression, Geometrical representation Decomposition	08 Hrs		
of variability: SST, SSR, SSE, R-Squared			

Text Books:

न्यम् '

S. No.	Title	Author(s)	Publisher
1	R Programming for Beginners	Sandip Rakshit	McGraw Hill Education (India)
2	Data Analytics using R	Seema Acharya	McGrawHill Education (India)

Reference Books:

S. No.	Title	Author(s)	Publisher
1	Tutorials Point (I) simply easy learning	Online Tutorial Library (2018)	https://www.t utorialspoint.c om/r/r_tutoria l.pdf
2	R for Dummies	Andrie de Vries, Joris Meys	John Wiley and Sons

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

कैवल्यम्"

SYLLABUS							
B. Tech. Seven	th Semester- Computer Scier	nce & El	nainee	erina (I	Data Science)		
Subject Code CS110703	Deep Learning	L = 3	T = 2	P = 0	Credits = 3		
Evaluation	ESE	СТ	TA	Total	ESE Duration		
Scheme	100	20	30	150	3 Hours		

Course Objectives	Course Outcomes	
The objective of the course to:	Students will be able to:	
 To introduce the fundamentals of deep learning and the main research activities in this field. To learn architectures and optimization methods for deep neural network training. 	 CO5 Understand the fundamentals of deep and the main research activities in this field CO6 Remember architectures and optimethods for deep neural network training CO7 Implement, apply and test relevant algorithms in TensorFlow CO8 Critically evaluate the method's applicat new contexts and construct new applicat 	learning eld cimization g learning cability in ions
Multilaver Percentrons (MLPs)	Representation Power of MLPs Sigmoid	08 Hrs
Neurons, Feed Forward Neural Netv	vorks. Back propagation	00 1115
UNIT 2 Activation Functions 8 Momentum Based GD, Nesterov Component Analysis and its interp Parameters v/s Hyper-parameters	& Parameters: Gradient Descent (GD), Accelerated GD, Stochastic GD, Principal pretations, Singular Value Decomposition,	CO 02 08 Hrs
UNIT 3 Auto-Encoders & Regulariz Regularization in auto encoders, encoders, Regularization: Bias Va stopping, Dataset augmentation, Mechanism, Attention over images,	ation: Auto encoders and relation to PCA, Denoising auto encoders, Sparse auto ariance Tradeoff, L2 regularization, Early , Encoder Decoder Models, Attention Batch Normalization	CO 03 08 Hrs
UNIT 4 Deep Learning Models Convolution/pooling layers, CNN VGGNet, GoogLeNet, ResNet. Introd time (BPTT), Vanishing and Explodin	s: Introduction to CNNs, Architecture, Applications, LeNet, AlexNet, ZF-Net, duction to RNNs, Back propagation through g Gradients, Truncated BPTT, GRU, LSTMs	CO 04 08 Hrs
UNIT 5 Deep Learning Application Processing, Speech recognition, Vide	ons: Image Processing, Natural Language eo Analytics	CO 05 08 Hrs

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

SYLLABUS

B. Tech. Seventh Semester- Computer Science & Engineering (Data Science)

Text Books:

S. No.	Title	Author(s)	Publisher
1	Deep Learning	Ian Goodfellow, Yoshua Bengio, Aaron Courville	The MIT Press
2	Learning deep architectures for AI	Bengio, Yoshua	Now Publishers

Reference Books:

S. No.	Title	Author(s)	Publisher
1	Deep Learning	Rajiv Chopra	Khanna Book Publishing

Alternative NPTEL/SWAYAM Course (if any):

S. No.	NPTEL Course Name	Instructor	Host Institute
1	Deep Learning	Prof. Mitesh M. Khapra	IIT Ropar
2	Deep Learning	Prof. Prabir Kumar Biswas	IIT Kharagpur

Web Reference:

https://nptel.ac.in/courses/106/106/106106184/ https://www.coursera.org/specializations/deep-learning

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

यम् '

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

Subject Code CS110792	Deep Learning Lab	L =	T = 0	P = 2	Credits = 1
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	25	-	25	50	3 Hours

Course Objectives	Course Outcomes
 To illustrate simple neural networks and deep neural networks. To interpret the model results and analyze the accuracy of the model. To explain different preprocessing operations on structured data or on unstructured data. To explain how to predict the results using a trained model. 	 Perform different pre-processing operations on structured or unstructured data Design neural network layers for various learning problems. Demonstrate binary as well as multiclass classification problems. Interpret the model results and analyze the performance of the model. Apply statistical concepts and perform Exploratory Data Analysis. Implement, train, and validate their own neural network
 Guidelines for Laboratory Conduction: Prior knowledge of Linear Algebra, P Neural Network, Python programming I Operating System recommended: - 64- Recommended tools for the implement MATLAB, etc. Use of the Anaconda platform is encourted 	robability Theory, Machine Learning, Artificial anguage is essential. -bit Open-source Linux or its derivative tation: Python, OpenCV, TensorFlow, Pytorch, iraged.
 Write a program to generate following and appropriate values for weights, bia a) AND logic function b) OR logic function c) NOT logic function d) NOR logic function e) XOR logic function 	Jogic functions using McCulloch-Pitts neuron s and threshold
 2. Write a program to build a logistic mindset. Consider following guidelines. a) Consider any convenient dataset dataset. b) Define the appropriate model struct 	regression classifier with a Neural Network et (Cats dataset etc.) and pre-process the eture.

	1.00	

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

- c) Evaluate the model performance.
- d) Analyse the obtained results
- 3. Design a neural network (NN) model with one hidden layer for classification problems. Use Planar data set or any other suitable data set
 - a) Implement a 2-class classification neural network with a single hidden layer.
 - b) Use units with a non-linear activation function, such as tanh.
 - c) Compute the cross-entropy loss.
 - d) Implement forward and backward propagation.
 - e) Evaluate the model performance.
 - f) Analyse the results
- 4. Implement a multilayer perceptron (MLP) model for prediction such as house prices.a) Perform Exploratory Data Analysis
 - b) Prepare dataset
 - c) Build MLP model
 - d) Evaluate Model performance
 - e) Predict for test data
- Build a Multiclass classifier using the CNN model. Use MNIST or any other suitable dataset.
 - a) Perform Data Pre-processing
 - b) Define Model and perform training
 - c) Evaluate Results using confusion matrix
- 6. Design an object detection model using deep neural networks for simple objects.
 - a) Select appropriate dataset and perform data pre-processing
 - b) Define architecture in terms of layers
 - c) Evaluate Model performance
 - d) Label the object with appropriate text
- 7. Install OpenCV package on your system and perform following operations on images.
 - a) Image Sharpening
 - b) Edge Detection & Image Gradients
 - c) Cropping
 - d) Blurring
 - e) Background Subtraction Method
- 8. Design and implement a CNN for Image Classification.
 - a) Select a suitable image classification dataset (medical imaging, agricultural, etc.).
 - b) Optimized with different hyper-parameters including learning rate, filter size, no. of layers, optimizers, dropouts, etc
- 9. Apply a pre-trained network and apply it to a new task using transfer learning.
 - a) Use any three pre-trained models including AlexNet, GoogleNet, VGGNet, MobileNet, ResNet, DenseNet, etc.
 - b) Fine-tune the hyper-parameters and compare their performance for a suitable

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Seventh Semester- Computer Science & Engineering (Data Science)

application.

- 10. Design RNN or its variant including LSTM or GRU.
 - a) Select a suitable time series dataset. Example predict sentiments based on product reviews
 - b) Apply for prediction
- 11. Build a word2vec model for unstructured data.
 - a) Use any unstructured text dataset
 - b) Convert words into a representative vector of numerical values

12. Implement an artificial neural network on GPUs

- a) Implement ANN on GPUs.
- b) Deploy the model using Amazon SageMaker or other platforms available
- 13. Implement Auto-encoders for any of the task including.
 - a) Data Compression
 - b) Image de-noising
 - c) Dimensionality reduction
- 14. Design and implement Deep Convolutional GAN to generate images of faces/digits from a set of given images.

Text Books:

S. No.	Title	Author(s)	Publisher
1	P Programming for Paginners	Sandin Dakahit	McGraw Hill Education
1	K Flogramming for Degrimers	Sandip Kaksint	(India)
		Saama Achanya	McGrawHill Education
2	Data Analytics using R	Seema Acharya	(India)

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

यम् '

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

Subject Code CS102791	R Programming Lab	L =	T = 0	P = 2	Credits = 1
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	25	-	25	50	3 Hours

	Course Objectives	Course Outcomes			
• • •	Demonstrate use of basic functions Create their own customized functions Construct tables and figures for descriptive statistics Learn to understand new data sets and functions by yourself Work on built-in real-time cases for analysis and visualization	 Enable to build programming logic and thereby developing skills in programming Clear understanding on how to organize data analyse data using real time example 			
List of	Experiments.				
1.	Write a program to check whether a ye or not?	ar (integer) entered by the user is a leap year			
2.	Write an R program to find the sum statement and while loop.	of natural without formula using the if-else			
3.	3. Write a program that prints the grades of the students according to the marks obtained. The grading of the marks should be as follows. Marks Grades 800-1000				
4.	Write an R program to make a simple divide using switch cases and functions	calculator that can add, subtract, multiply and			
5.	Write a program to perform searching with the list, print that the search is success the list. Program:	within a list (1 to 50). If the number is found in sful otherwise print that the number is not in			
6.	Create a list and data frame that sto students. Find out the total marks, ave of every subject.	erage, maximum marks and minimum marks			
7.	Write the steps to import data from functions like rm(),dim(),head(), tail(), s rows.	Excel to CSV files and apply data viewer sorting, filtering, searching to view few set of			
8.	Write a program to create two 3 X 3 operations:a. Transpose of the matrix.b. Addition.c. Subtraction	matrices A and B and perform the following			
9.	 Write an R program to create a list convalues and do the following manipulation a. Access the first element in the l b. Give the names to the elements c. Add element at some position in 	ntaining strings, numbers, vectors and logical ons over the list: ist s in the list n the list			

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Seventh Semester- Computer Science & Engineering (Data Science)

- d. Remove the element
- e. Print the fourth element
- f. Update the third element
- 10. Let us use the built-in dataset air quality which has Daily air quality measurements in New York, May to September 1973. Create a histogram by suing appropriate arguments for the following statements:
 - a. Assigning names, using the air quality data set
 - b. Change colours of the Histogram
 - c. Remove Axis and Add Labels to Histogram
 - d. Change Axis limits of a Histogram
 - e. Create a Histogram with density and Add Density curve to the Histogram
- 11. Design a data frame in R for storing about 20 employee details. Create a CSV file named "input.csv" that defines all the required information about the employee such as id, name, salary, start_date, dept. Import into R and do the following analysis.
 - a. Find the total number rows & columns
 - b. Find the maximum salary
 - c. Retrieve the details of the employee with maximum salary
 - d. Retrieve all the employees working in the IT Department
 - e. Retrieve the employees in the IT Department whose salary is greater than 20000 and write these details into another file "output.csv".
- 12. Create a dataset or table ['Smart Phone"] in an excel sheet that stores the mobile information [price, company name, model, Sale Percent] of five different companies. Store at least 20 rows. Write the scripts and find out the output for the following information.
 - a. Maximum price of the mobile of each company
 - b. Minimum price of mobile of each company
 - c. Average price of mobile of each company
 - **d.** Total Price of mobile of each company

Text Books:

S. No.	Title	Author(s)	Publisher
1	D Programming for Paginners	Sandin Dalahit	McGraw Hill Education
1	R Programming for Beginners	Sandip Kaksint	(India)
		Seema Acharya	McGrawHill Education
2	Data Analytics using R	Seema Acharya	(India)

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

Subject Code CS102721	Internet and Web Technology	L = 3	T = 2	P = 0	Credits = 3
Evaluation	ESE	СТ	ТА	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes			
 Describe the important features of the Web and Web browser software Evaluate e-mail software and Web-based e- mail services Use FTP and other services to transfer and store data Demonstrate the use of real-time chat and briefly describe the history of the wireless Internet Create HTML documents and enhance them with browser extensions 	 Students will be able to: Understand, analyze and apply the role of languages like HTML, DHTML, CSS, XML, Javascript, and web applications Analyze a web page and identify its elements and attributes. Create XML documents and XML Schema 			
UNIT-I INTRODUCTION TO INTERNET : Introduction, Evolution of Internet, Internet Applications, Internet Protocol -TCP/IP, UDP, HTTP, Secure Http(Shttp) Internet Addressing – Addressing Scheme – Ipv4 & IPv6, Network Byte Order, Domain Name Server and IP Addresses, Mapping . Internet Service Providers, Types Of Connectivity Such As Dial-Up Leaded Vsat Etc. Web Technologies: ThreeTier Web Based Architecture; Jsp, Asp, J2ee, .Net Systems				
UNIT-II HTML CSS AND SCRIPTING: HTML - Introduction, Sgml, Dtd(Document Type Definition, Basic Html Elements, Tags and usages, HTML Standards, Issues in HTML Dhtml: Introduction Cascading Style Sheets: Syntax ,Class Selector, Id Selector Dom (Document ObjectModel) & DSO (Data Source Object) Approaches To Dynamic Pages: Cgi, Java Applets, Plug Ins, Active X, Java Script –Java Script Object Model, Variables-Constant – Expressions, Conditions Relational Operators- Data Types – Flow Control – Functions & Objects-events and event handlers – Data type Conversion & Equality – Accessing HTML form elements				
UNIT-III XML: What is XML – Basic S Presentation Standards, Standards that build on simple XML File, Creating a Document type Attributes & Entities in the DTD ,Defining P Resolving a naming conflict, Using Namespa	tandards, Schema Standards, Linking & XML, Generating XML data, Writing a definition, Documents &Data ,Defining arameter Entities & conditional Sections, aces, Designing an XML data structure,			

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS

B. Tech. Seventh Semester- Computer Science & Engineering (Data Science)

Normalizing Data, Normalizing DTDS

	CO _
UNIT-IV INTERNET SECURITY & FIREWALLS: Security Threats From Mobile	
Codes, Types Of Viruses, Client Server Security Threats, Data & Message Security, Various	Hrs
electronic payment systems, Introduction to EDI, Challenges- Response System, Encrypted	
Documents And Emails, Firewalls: Hardened Firewall Hosts, Ip- Packet Screening, Proxy	
Application Gateways, Aaa (Authentication, Authorization And Accounting).	
	CO
UNIT-V WEBSITE PLANNING & HOSTING: Introduction, Web Page Lay-Outing,	Hrs
Where To Host Site, Maintenance Of Site, Registration Of Site On Search Engines And	

Indexes, Introduction To File Transfer Protocol, Public Domain Software, Types Of Ftp Servers (Including Anonymous), Ftp Clients Common Command. Telnet Protocol, Server Domain, Telnet Client, Terminal Emulation. Usenet And Internet Relay Chat.

Text Books:

S. No.	Title	Author(s)	Publisher
1	Internet & Intranet Engineering	Daniel Minoli	ТМН
2	Internet for Every One	Alexis Leon and Mathews Leon	Tech World

Reference Books:

S. No.	Title	Author(s)	Publisher
1	Using HTML 4, XML and JAVA	Eric Ladd, Jim O'Donnel	Prentice Hall of India -1999
	Beginning Java Script	Paul Wilton	SPD Publications
	Frontiers of Electronics of Commerce	Ravi kalakota & Andrew B. Whinston	Addison Wesley

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS B. Tech. Seventh Semester- Computer Science & Engineering (Data Science)

Subject Code CS100741	Enterprise Resource Planning	L = 3	T = 0	P = 0	Credits = 3
Examination	ESE	СТ	ТА	Total	ESE Duration
	100	20	30	150	3 Hours
Scheme	Minimum number of class tests to be conducted=02			Minimum	Assignments=02

Course Objectives	Course Outcomes
 To know the basics of ERP and business modules of ERP. To understand the key implementation issues of ERP. To be aware of some popular products in the area of ERP. To appreciate the current and future trends in ERP 	 To know the basics of ERP To understand the key implementation issues of ERP To know the business modules of ERP To be aware of some popular products in the area of ERP To appreciate the current and future trends in ERP

Unit-I Introduction: Overview of enterprise systems ñ Evolution - Risks and benefits – Fundamental technology - Issues to be consider in planning design and implementation of cross functional integrated ERP systems. Introduction to SAP

Unit- II ERP Solutions and Functional Modules: Overview of ERP software solutions- Small, medium and large enterprise vendor solutions, BPR and best business practices - Business process Management, Functional modules.

Unit-III ERP Implementation: Planning Evaluation and selection of ERP systems - Implementation life cycle - ERP implementation, Methodology and Frame work- Training ñ Data Migration – People Organization in implementation-Consultants, Vendors and Employees.

Unit-IV Post Implementation: Maintenance of ERP- Organizational and Industrial impact; Success and Failure factors of ERP Implementation. Emerging Trends on ERP: Extended ERP systems and ERP add-ons -CRM, SCM, Business analytics - Future trends in ERP systems-web enabled, Wireless technologies, cloud computing.

Unit V ERP and Related Technologies. ERP and Related Technologies. Business Process Reengineering (BPR). Management Information System (MIS). Executive Information System. Decision support System (DSS). Supply Chain Management (SCM) Other Related Technologies of SCM E-Procurement; E-Logistics; Internet Auctions; E-markets; Electronic Business Process Optimization; Business Objects in SCM; E commerce

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

SYLLABUS

B. Tech. Seventh Semester- Computer Science & Engineering (Data Science)

Text Books:

S. No.	Title	Author(s)	Publisher
1	ERP demystified	Alexis Leon	Tata McGraw-Hill,2008
2	Essentials of Business Process and Information System	Sinha P. Magal and Jeffery Word	Wiley India,2012

Reference Books:

S. No.	Title	Author(s)	Publisher
1	ERP and Supply Chain Management	Christian N. Madu	CHI4
2	Implementing SAP ERP Sales & Distribution	Glynn C. Williams	McGraw-Hill

			1.00	Applicable for AY 2021-22 Onwards
Chairman (AC)	Chairman (BoS)	Date of Release	Version	